Search results for " computer‐assisted image processing"

showing 1 items of 1 documents

A novel solution based on scale invariant feature transform descriptors and deep learning for the detection of suspicious regions in mammogram images.

2020

Background: Deep learning methods have become popular for their high-performance rate in the classification and detection of events in computer vision tasks. Transfer learning paradigm is widely adopted to apply pretrained convolutional neural network (CNN) on medical domains overcoming the problem of the scarcity of public datasets. Some investigations to assess transfer learning knowledge inference abilities in the context of mammogram screening and possible combinations with unsupervised techniques are in progress. Methods: We propose a novel technique for the detection of suspicious regions in mammograms that consist of the combination of two approaches based on scale invariant feature …

lcsh:Medical technologyclassificationlcsh:R855-855.5computer-assisted image processingdigital mammographydeep learningOriginal Articlecomputing methodologiesClassification computer‐assisted image processing computing methodologies deep learning digital mammography
researchProduct